Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.627
1.
Brain Res Bull ; 211: 110943, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614408

BACKGROUND: Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS: We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS: PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION: Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.


Feces , Gastrointestinal Microbiome , Metabolomics , Neuralgia , Oxazoles , PPAR alpha , RNA, Ribosomal, 16S , Spinal Cord , Tyrosine/analogs & derivatives , Animals , PPAR alpha/metabolism , Neuralgia/metabolism , Neuralgia/drug therapy , Neuralgia/microbiology , Male , Mice , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/physiology , Spinal Cord/metabolism , Spinal Cord/drug effects , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Microglia/metabolism , Microglia/drug effects , Mice, Inbred C57BL
2.
Sci Rep ; 14(1): 9198, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649417

Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.


Biomarkers , COVID-19 , Kynurenine/analogs & derivatives , Nitrosative Stress , SARS-CoV-2 , Tyrosine , Tyrosine/analogs & derivatives , Humans , COVID-19/diagnosis , COVID-19/blood , COVID-19/metabolism , Male , Female , Middle Aged , Biomarkers/blood , Adult , Tyrosine/blood , Tyrosine/metabolism , Aged , Kynurenine/blood , Kynurenine/metabolism , S-Nitrosothiols/blood , S-Nitrosothiols/metabolism , Nitric Oxide/blood , Nitric Oxide/metabolism , Tryptophan/blood , Tryptophan/analogs & derivatives , Tryptophan/metabolism , Glycation End Products, Advanced/blood , Glycation End Products, Advanced/metabolism , ROC Curve
3.
J Am Chem Soc ; 146(17): 11944-11954, 2024 May 01.
Article En | MEDLINE | ID: mdl-38622919

Protein tyrosine nitration (PTN) by oxidative and nitrative stress is a well-known post-translational modification that plays a role in the initiation and progression of various diseases. Despite being recognized as a stable modification for decades, recent studies have suggested the existence of a reduction in PTN, leading to the formation of 3-aminotyrosine (3AT) and potential denitration processes. However, the vital functions of 3AT-containing proteins are still unclear due to the lack of selective probes that directly target the protein tyrosine amination. Here, we report a novel approach to label and enrich 3AT-containing proteins with synthetic salicylaldehyde (SAL)-based probes: SALc-FL with a fluorophore and SALc-Yn with an alkyne tag. These probes exhibit high selectivity and efficiency in labeling and can be used in cell lysates and live cells. More importantly, SALc-Yn offers versatility when integrated into multiple platforms by enabling proteome-wide quantitative profiling of cell nitration dynamics. Using SALc-Yn, 355 proteins were labeled, enriched, and identified to carry the 3AT modification in oxidatively stressed RAW264.7 cells. These findings provide compelling evidence supporting the involvement of 3AT as a critical intermediate in nitrated protein turnover. Moreover, our probes serve as powerful tools to investigate protein nitration and denitration processes, and the identification of 3AT-containing proteins contributes to our understanding of PTN dynamics and its implications in cellular redox biology.


Tyrosine , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Tyrosine/metabolism , Amination , Humans , Proteomics/methods , Aldehydes/chemistry , Aldehydes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Proteins/chemistry , Proteins/metabolism , Proteins/analysis , Mice , Animals
4.
Sci Rep ; 14(1): 9845, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684750

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Nanoparticles , Tyrosine , Animals , Nanoparticles/chemistry , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Administration, Inhalation , Lung/metabolism , Lung/drug effects , Mice , Asthma/drug therapy , Polyesters/chemistry , Polyesters/chemical synthesis , Dry Powder Inhalers , Fluticasone/chemistry , Fluticasone/administration & dosage , Drug Delivery Systems , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Particle Size , Drug Carriers/chemistry
5.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38632902

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Disulfides , Oxidative Stress , PPAR gamma , Tyrosine/analogs & derivatives , PPAR gamma/metabolism , Oxidative Stress/drug effects , Humans , Animals , Molecular Structure , Reactive Oxygen Species/metabolism , Neurons/drug effects , Histone Deacetylases/metabolism , Histone Deacetylases/drug effects , NF-E2-Related Factor 2/metabolism , Porifera/chemistry , Membrane Potential, Mitochondrial/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Glutathione/metabolism , Alkaloids/pharmacology , Alkaloids/chemistry , Catalase/metabolism , Glutathione Peroxidase/metabolism , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Membrane Transport Proteins/metabolism
6.
J Nucl Med ; 65(5): 688-692, 2024 May 01.
Article En | MEDLINE | ID: mdl-38514085

Small functional pituitary tumors can cause severely disabling symptoms and early death. The gold standard diagnostic approach includes laboratory tests and MRI, with or without inferior petrosal sinus sampling (IPSS). In up to 40% of patients, however, the source of excess hormone production remains unidentified or uncertain. This excludes patients from surgical, Gamma Knife, and CyberKnife therapy and adversely affects overall cure rates. We here assess the diagnostic yield of O-(2-[18F]fluoroethyl)-l-tyrosine ([18F]FET) PET/MRI for detection of small functional pituitary tumors in these patients. Methods: This retrospective analysis included patients with Cushing disease (CD) but prior negative or inconclusive MRI results who underwent [18F]FET PET/MRI between February 1, 2021, and December 1, 2022. PET/MR images and MR images alone were evaluated by experienced nuclear radiologists, neuroradiologists, or radiologists. Postoperative tissue analysis (when performed) was used as a reference standard to assess diagnostic metrics (i.e., sensitivity and positive predictive value). Results were also compared with previously obtained MR images, preceding IPSS, and clinical or biochemical follow-up. Results: Twenty-two patients (68% female; mean age ± SD, 48 ± 15 y; range, 24-68 y) were scanned. All patients showed a clear metabolic focus on [18F]FET PET, whereas reading of the MRI alone yielded a suspected lesion in only 50%. Fifteen patients underwent surgery directed at the [18F]FET-positive focus. Tissue analysis confirmed a pituitary adenoma/pituitary neuroendocrine tumor of the corticotroph cell type (TPIT lineage) in 10 of 15 and a pituicytoma in 1 of 15, rendering a sensitivity of 100% and a positive predictive value of 73%. Lateralization was more accurate with [18F]FET PET/MRI than with IPSS in 33%. Twelve of 16 (75%) patients who received surgical, Gamma Knife, or CyberKnife therapy after [18F]FET PET/MRI reached short-term remission. Conclusion: [18F]FET PET/MRI shows a high diagnostic yield for localizing small functional pituitary tumors. This multimodal imaging technique provides a welcome improvement for diagnosis, planning of surgery, and clinical outcome in patients with Cushing disease, particularly those with repeated negative or inconclusive MRI results with or without IPSS.


Magnetic Resonance Imaging , Pituitary Neoplasms , Positron-Emission Tomography , Tyrosine/analogs & derivatives , Humans , Female , Male , Middle Aged , Pituitary Neoplasms/diagnostic imaging , Pituitary Neoplasms/surgery , Adult , Retrospective Studies , Positron-Emission Tomography/methods , Multimodal Imaging , Aged , Young Adult
7.
Mar Drugs ; 22(3)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38535473

The Verongida order comprises several sponge families, such as Aplysinellidae, Aplysinidae, Ianthellidae, and Pseudoceratinidae, reported for producing bromotyrosine-derived compounds. First identified in 1913, bromotyrosine derivatives have since captivated interest notably for their antitumor and antimicrobial properties. To date, over 360 bromotyrosine derivatives have been reported. Our review focuses specifically on bromotyrosine derivatives newly reported from 2004 to 2023, by summarizing current knowledge about their chemical diversity and their biological activities.


Bandages , Porifera , Tyrosine/analogs & derivatives , Humans , Animals
8.
Nat Commun ; 15(1): 2202, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38485927

Viral fusion proteins facilitate cellular infection by fusing viral and cellular membranes, which involves dramatic transitions from their pre- to postfusion conformations. These proteins are among the most protective viral immunogens, but they are metastable which often makes them intractable as subunit vaccine targets. Adapting a natural enzymatic reaction, we harness the structural rigidity that targeted dityrosine crosslinks impart to covalently stabilize fusion proteins in their native conformations. We show that the prefusion conformation of respiratory syncytial virus fusion protein can be stabilized with two engineered dityrosine crosslinks (DT-preF), markedly improving its stability and shelf-life. Furthermore, it has 11X greater potency as compared with the DS-Cav1 stabilized prefusion F protein in immunogenicity studies and overcomes immunosenescence in mice with simply a high-dose formulation on alum.


Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Tyrosine/analogs & derivatives , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , Tyrosine/metabolism , Viral Fusion Proteins , Respiratory Syncytial Virus Infections/prevention & control
9.
Biosens Bioelectron ; 255: 116246, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38537430

3-nitrotyrosine (3-NT) is a biomarker closely associated with the early diagnosis of oxidative stress-related disorders. The development of an accurate, cost-effective, point-of-care 3-NT sensor holds significant importance for self-monitoring and clinical treatment. In this study, a selective, sensitive, and portable molecularly imprinted electrochemical sensor was developed. ZIF-67 with strong adsorption capacity was facilely modified on an electrochemically active laser-induced graphene (LIG) substrate (formed ZIF-67/LIG). Subsequently, biocompatible dopamine was chosen as the functional monomer, and interference-free ʟ-tyrosine was used as the dummy template to create molecularly imprinted polydopamine (MIPDA) on the ZIF-67/LIG, endowing the sensor with selectivity. The morphologies, electrochemical properties, and detection performance of the sensor were comprehensively investigated using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. To achieve the best performance, several parameters were optimized, including the number of polymerization cycles (15), elution time (60 min), incubation time (7 min), and pH of the buffer solution (6). The turnaround time for this sensor is 10 min. Benefiting from the alliance of MIPDA, ZIF-67, and LIG, the sensor exhibited excellent sensitivity with a detection limit of 6.71 nM, and distinguished selectivity against 11 interfering substances. To enable convenient clinical diagnosis, a customized electrochemical microsensor with MIPDA/ZIF-67/LIG was designed, showcasing excellent reliability and convenience in detecting biological samples without pretreatment. The proposed microsensor will not only facilitate clinical diagnosis and improve patient care, but also provide inspiration for the development of other portable and accurate electrochemical biosensors.


Biosensing Techniques , Graphite , Indoles , Molecular Imprinting , Polymers , Tyrosine/analogs & derivatives , Humans , Graphite/chemistry , Point-of-Care Systems , Reproducibility of Results , Limit of Detection , Biosensing Techniques/methods , Electrochemical Techniques/methods , Molecular Imprinting/methods , Electrodes
10.
J Agric Food Chem ; 72(10): 5269-5282, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38439706

Dityrosine (Dityr) has been detected in commercial food as a product of protein oxidation and has been shown to pose a threat to human health. This study aims to investigate whether Dityr causes a decrease in lactic acid metabolism in the gastrocnemius muscle during endurance exercise. C57BL/6 mice were administered Dityr or saline by gavage for 13 weeks and underwent an endurance exercise test on a treadmill. Dityr caused a severe reduction in motion displacement and endurance time, along with a significant increase in lactic acid accumulation in the blood and gastrocnemius muscle in mice after exercise. Dityr induced significant mitochondrial defects in the gastrocnemius muscle of mice. Additionally, Dityr induced serious oxidative stress in the gastrocnemius muscle, accompanied by inflammation, which might be one of the causes of mitochondrial dysfunction. Moreover, significant apoptosis in the gastrocnemius muscle increased after exposure to Dityr. This study confirmed that Dityr induced oxidative stress in the gastrocnemius muscle, which further caused significant mitochondrial damage in the gastrocnemius muscle cell, resulting in decreased capacity of lactic acid metabolism and finally affected performance in endurance exercise. This may be one of the possible mechanisms by which highly oxidized foods cause a decreased muscle energy metabolism.


Mitochondria , Muscle, Skeletal , Tyrosine/analogs & derivatives , Humans , Animals , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Oxidative Stress
11.
Toxicol Sci ; 199(1): 40-48, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38366941

Organophosphorus pesticides (OPPs) having a phosphate ester moiety, such as malathion (MA) and methidathion (DMTP), are widely used and have been detected in many fatal cases of accidental exposure or suicide in Japan. In forensic toxicology, the accurate determination of blood OPP concentration is mandatory to prove death by OPP poisoning. However, fatal pesticide concentration in blood at autopsy varies depending on the circumstances surrounding the dead body. In this study, we found that 16 OPPs were degraded by human serum albumin (HSA) in a temperature-dependent fashion. The mechanism underlying MA, DMTP, azinphos-methyl, etrimfos, fenthion (MPP), pirimiphos-methyl, (E)-dimethylvinphos, (Z)-dimethylvinphos, vamidothion, edifenphos (EDDP), fosthiazate, and pyraclofos degradation involves the formation of adducts with tyrosine residues in HSA. The mass spectra obtained by liquid chromatography quadrupole Orbitrap mass spectrometry revealed that phosphate ester amino acid adducts such as Y-adduct1, Y-adduct2, Y-adduct3, Y-adduct4, and Y-adduct5 were formed in HSA solution incubated with OPPs. These results indicate that the 16 OPPs are postmortem changed by HSA. The detection of phosphate ester amino acid adducts such as Y-adduct1, Y-adduct2, Y-adduct3, Y-adduct4, and Y-adduct5, instead of MA, DMTP, azinphos-methyl, etrimfos, MPP, pirimiphos-methyl, (E)-dimethylvinphos, (Z)-dimethylvinphos, vamidothion, EDDP, fosthiazate, and pyraclofos per se, may be used to determine death by these OPPs poisoning.


Organophosphorus Compounds , Pesticides , Serum Albumin, Human , Tyrosine , Humans , Organophosphorus Compounds/toxicity , Organophosphorus Compounds/chemistry , Tyrosine/analogs & derivatives , Pesticides/toxicity , Pesticides/chemistry , Serum Albumin, Human/chemistry , Postmortem Changes , Chromatography, Liquid , Mass Spectrometry/methods , Forensic Toxicology/methods
12.
Article En | MEDLINE | ID: mdl-38354459

Inhalation of chlorine gas, with subsequent hydrolysis in the airway and lungs to form hydrochloric acid (HCl) and hypochlorous acid (HOCl), can cause pulmonary edema (i.e., fluid build-up in the lungs), pulmonary inflammation (with or without infection), respiratory failure, and death. The HOCl produced from chlorine is known to react with tyrosine to form adducts via electrophilic aromatic substitution, resulting in 3-chlorotyrosine and 3,5-dichlorotyrosine adducts. While several analysis methods are available for determining these adducts, each method has significant disadvantages. Hence, a simple and sensitive ultra-high performance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) method was developed for the determination of chlorotyrosine adducts. The sample preparation involves base hydrolysis of isolated plasma proteins to form 2-chlorophenol (CP) from monochlorotyrosine adducts and 2,6-dichlorophenol (2,6-DCP), from dichlorotyrosine adducts, as markers of chlorine exposure. The chlorophenols are extracted with cyclohexane prior to UHPLC-MS/MS analysis. The method produced excellent sensitivity for 2,6-DCP with a limit of detection of 2.2 µg/kg, calibration curve linearity extending from 0.054-54 mg/kg (R2 ≥ 0.9997 and %RA > 94), and accuracy and precision of 100 ± 14 %, and <15 % relative standard deviation, respectively. The sensitivity of the method for 2-CP was relatively poor, so it was used only as a secondary marker for severe chlorine exposure. The method successfully detected elevated levels of 2,6-DCP from hypochlorite-spiked plasma protein and plasma protein isolated from chlorine-exposed rats.


Chlorine , Chlorophenols , Tyrosine/analogs & derivatives , Rats , Animals , Chlorine/analysis , Chlorine/chemistry , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Blood Proteins
13.
Biomed Pharmacother ; 172: 116283, 2024 Mar.
Article En | MEDLINE | ID: mdl-38377735

BACKGROUND: Galectins (Gal's) are a family of carbohydrate-binding proteins that are known to support the tumour microenvironment through their immunosuppressive activity and ability to promote metastasis. As such they are attractive therapeutic targets, but little is known about the cellular expression pattern of galectins within the tumour and its neighbouring stromal microenvironment. Here we investigated the cellular expression pattern of Gals within pancreatic ductal adenocarcinoma (PDAC). METHODS: Galectin gene and protein expression were analysed by scRNAseq (n=4) and immunofluorescence imaging (n=19) in fibroblasts and epithelial cells of pancreatic biopsies from PDAC patients. Galectin surface expression was also assessed on tumour adjacent normal fibroblasts and cancer associated primary fibroblasts from PDAC biopsies using flow cytometry. RESULTS: scRNAseq revealed higher Gal-1 expression in fibroblasts and higher Gal-3 and -4 expression in epithelial cells. Both podoplanin (PDPN+, stromal/fibroblast) cells and EpCAM+ epithelial cells expressed Gal-1 protein, with highest expression seen in the stromal compartment. By contrast, significantly more Gal-3 and -4 protein was expressed in ductal cells expressing either EpCAM or PDPN, when compared to the stroma. Ductal Gal-4 cellular expression negatively correlated with ductal Gal-1, but not Gal-3 expression. Higher ductal cellular expression of Gal-1 correlated with smaller tumour size and better patient survival. CONCLUSIONS: In summary, the intricate interplay and cell-specific expression patterns of galectins within the PDAC tissue, particularly the inverse correlation between Gal-1 and Gal-4 in ducts and its significant association with patient survival, highlights the complex molecular landscape underlying PDAC and provides valuable insights for future therapeutic interventions.


Benzamides , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tyrosine/analogs & derivatives , Humans , Epithelial Cell Adhesion Molecule , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Transcription Factors , Galectins/genetics , Tumor Microenvironment
14.
PLoS One ; 19(2): e0296960, 2024.
Article En | MEDLINE | ID: mdl-38394155

Tubulin tyrosine ligase 12 (TTLL12) is a promising target for therapeutic intervention since it has been implicated in tumour progression, the innate immune response to viral infection, ciliogenesis and abnormal cell division. It is the most mysterious of a fourteen-member TTL/TTLL family, since, although it is the topmost conserved in evolution, it does not have predicted enzymatic activities. TTLL12 seems to act as a pseudo-enzyme that modulates various processes indirectly. Given the need to target its functions, we initially set out to identify a property of TTLL12 that could be used to develop a reliable high-throughput screening assay. We discovered that TTLL12 suppresses the cell toxicity of nitrotyrosine (3-nitrotyrosine) and its ligation to the C-terminus of detyrosinated α-tubulin (abbreviated to ligated-nitrotyrosine). Nitrotyrosine is produced by oxidative stress and is associated with cancer progression. Ligation of nitrotyrosine has been postulated to be a check-point induced by excessive cell stress. We found that the cytotoxicities of nitrotyrosine and tubulin poisons are independent of one another, suggesting that drugs that increase nitrotyrosination could be complementary to current tubulin-directed therapeutics. TTLL12 suppression of nitrotyrosination of α-tubulin was used to develop a robust cell-based ELISA assay that detects increased nitrotyrosination in cells that overexpress TTLL12 We adapted it to a high throughput format and used it to screen a 10,000 molecule World Biological Diversity SETTM collection of low-molecular weight molecules. Two molecules were identified that robustly activate nitrotyrosine ligation at 1 µM concentration. This is the pioneer screen for molecules that modulate nitrotyrosination of α-tubulin. The molecules from the screen will be useful for the study of TTLL12, as well as leads for the development of drugs to treat cancer and other pathologies that involve nitrotyrosination.


Neoplasms , Tubulin , Tyrosine/analogs & derivatives , Humans , Tyrosine/pharmacology , Cell Division , Microtubules
15.
Mol Cell Proteomics ; 23(3): 100733, 2024 Mar.
Article En | MEDLINE | ID: mdl-38342410

Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.


Peroxynitrous Acid , Tandem Mass Spectrometry , Tyrosine/analogs & derivatives , Chromatography, Liquid/methods , Proteins/chemistry , Peptides/chemistry , Tyrosine/metabolism , Antibodies
16.
Anal Chim Acta ; 1292: 342237, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38309846

3-Nitro-l-tyrosine (3NT) is an oxidative stress metabolite associated with neurodegenerative diseases such as Parkinson's disease and rheumatoid arthritis. In this study, the N, S-co-doped graphene quantum dots (NSGQDs) derived from nitrogen-doped Ti3C2Tx MXene nanosheet via the hydrothermal method in the presence of mercaptosuccinic acid was synthesized as an optical sensing probe to detect 3NT in human serum. Tetramethyl ammonium hydroxide, the nitrogen source and delamination agent, was used to prepare nitrogen-doped MXene nanosheets via one step at room temperature. The as-prepared NSGQDs are uniform with an average size of 1.2 ± 0.6 nm, and can be stable in aqueous solution for at least 90 d to serve as the fluorescence probe. The N atoms in N-MXene reduce the restacking and aggregation of MXene nanosheets, while the sulfur dopant in NSGQDs increases the quantum yield from 6.2 to 12.1 % as well as enhances the selectivity of 3NT over the other 12 interferences via coordination interaction with nitro group in 3NT. A linear range of 0.02-150 µM in PBS and 0.05-200 µM in human serum with a recovery of 97-108 % for 3NT detection is observed. Moreover, the limit of detection can be lowered to 4.2 and 7 nM in PBS and 1 × diluted human serum, respectively. Results obtained clearly indicate the potential application of the N-Ti3C2Tx derived NSGQD for effective detection of 3NT, which can open a window for the synthesis of doped GQDs via 2D MXene materials for ultrasensitive and selective detection of other biometabolites and biomarkers of neurodegenerative diseases in biological fluids.


Graphite , Neurodegenerative Diseases , Nitrites , Quantum Dots , Transition Elements , Tyrosine/analogs & derivatives , Humans , Nitrogen
17.
Int J Hematol ; 119(4): 383-391, 2024 Apr.
Article En | MEDLINE | ID: mdl-38240987

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder characterized by exocrine pancreatic insufficiency and bone marrow failure. The depletion of SBDS protein by RNA interference has been shown to cause inhibition of cell proliferation in several cell lines. However, the precise mechanism by which the loss of SBDS leads to inhibition of cell growth remains unknown. To evaluate the impaired growth of SBDS-knockdown cells, we analyzed Epstein-Barr virus-transformed lymphoblast cells (LCLs) derived from two patients with SDS (c. 183_184TA > CT and c. 258 + 2 T > C). After 3 days of culture, the growth of LCL-SDS cell lines was considerably less than that of control donor cells. By annealing control primer-based GeneFishing PCR screening, we found that galectin-1 (Gal-1) mRNA expression was elevated in LCL-SDS cells. Western blot analysis showed that the level of Gal-1 protein expression was also increased in LCL-SDS cells as well as in SBDS-knockdown 32Dcl3 murine myeloid cells. We confirmed that recombinant Gal-1 inhibited the proliferation of both LCL-control and LCL-SDS cells and induced apoptosis (as determined by annexin V-positive staining). These results suggest that the overexpression of Gal-1 contributes to abnormal cell growth in SBDS-deficient cells.


Benzamides , Bone Marrow Diseases , Epstein-Barr Virus Infections , Exocrine Pancreatic Insufficiency , Galectin 1 , Tyrosine , Animals , Humans , Mice , Bone Marrow Diseases/genetics , Cell Proliferation , Exocrine Pancreatic Insufficiency/genetics , Exocrine Pancreatic Insufficiency/metabolism , Galectin 1/genetics , Herpesvirus 4, Human , Proteins , Shwachman-Diamond Syndrome , Tyrosine/analogs & derivatives
18.
Cancer Sci ; 115(3): 937-953, 2024 Mar.
Article En | MEDLINE | ID: mdl-38186218

L-type amino acid transporter 1 (LAT1, SLC7A5) is an amino acid transporter expressed in various carcinomas, and it is postulated to play an important role in the proliferation of cancer cells through the uptake of essential amino acids. Cabazitaxel is a widely used anticancer drug for treating castration-resistant prostate cancer (CRPC); however, its effectiveness is lost when cancer cells acquire drug resistance. In this study, we investigated the expression of LAT1 and the effects of a LAT1-specific inhibitor, JPH203, in cabazitaxel-resistant prostate cancer cells. LAT1 was more highly expressed in the cabazitaxel-resistant strains than in the normal strains. Administration of JPH203 inhibited the growth, migration, and invasive ability of cabazitaxel-resistant strains in vitro. Phosphoproteomics using liquid chromatography-mass spectrometry to comprehensively investigate changes in phosphorylation due to JPH203 administration revealed that cell cycle-related pathways were affected by JPH203, and that JPH203 significantly reduced the kinase activity of cyclin-dependent kinases 1 and 2. Moreover, JPH203 inhibited the proliferation of cabazitaxel-resistant cells in vivo. Taken together, the present study results suggest that LAT1 might be a valuable therapeutic target in cabazitaxel-resistant prostate cancer.


Benzoxazoles , Large Neutral Amino Acid-Transporter 1 , Prostatic Neoplasms , Taxoids , Tyrosine/analogs & derivatives , Male , Humans , Phosphorylation , Large Neutral Amino Acid-Transporter 1/metabolism , Prostatic Neoplasms/drug therapy , Cyclin-Dependent Kinases/metabolism , Cell Line, Tumor
19.
Biomolecules ; 14(1)2024 Jan 17.
Article En | MEDLINE | ID: mdl-38254721

Galectin-1 (Gal-1) is an evolutionarily conserved sugar-binding protein found in intra- and extracellular spaces. Extracellularly, it binds to glycoconjugates with ß-galactoside(s) and functions in various biological phenomena, including immunity, cancer, and differentiation. Under extracellular oxidative conditions, Gal-1 undergoes oxidative inactivation, losing its sugar-binding ability, although it exhibits sugar-independent functions. An age-related decrease in serum Gal-1 levels correlates with decreasing bone mass, and Gal-1 knockout promotes osteoclastic bone resorption and suppresses bone formation. However, the effect of extracellular Gal-1 on osteoclast differentiation remains unclear. Herein, we investigated the effects of extracellular Gal-1 on osteoclastogenesis in human peripheral blood mononuclear cells (PBMCs) and mouse macrophage RAW264 cells. Recombinant Gal-1 suppressed the macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand-dependent osteoclast formation, actin ring formation, and bone-resorption activity of human PBMCs. Similar results were obtained for RAW264 cells. Gal-1 knockdown increased osteoclast-like cell formation, suggesting that it affected differentiation in an autocrine-like manner. Oxidized Gal-1 slightly affected differentiation, and in the presence of lactose, the differentiation inhibitory effect of galectin-1 was not observed. These findings suggest that extracellular Gal-1 inhibits osteoclast differentiation in a ß-galactoside-dependent manner, and an age-related decrease in serum Gal-1 levels may contribute to reduced osteoclast activity and decreasing bone mass.


Bone Resorption , Galectin 1 , Tyrosine , Animals , Humans , Mice , Bone Resorption/metabolism , Cell Differentiation , Galectin 1/metabolism , Galectin 1/pharmacology , Leukocytes, Mononuclear , Sugars , Tyrosine/analogs & derivatives , RAW 264.7 Cells/metabolism
20.
J Appl Lab Med ; 9(2): 342-349, 2024 03 01.
Article En | MEDLINE | ID: mdl-38169366

BACKGROUND: In the United States, 12 million short tons of chlorine are manufactured and transported each year. Due to the volume of this volatile chemical, large- and small-scale chemical exposures occur frequently. To diagnose and treat potentially exposed individuals, reference range values for confirmatory biomarkers are required to differentiate between normal and abnormal exposure levels. METHODS: Serum surplus samples (n = 1780) from the National Health and Nutrition Examination Survey (NHANES) 2015-2016 were measured for 2 chlorine biomarkers, 3-chlorotyrosine (Cl-Tyr) and 3,5-dichlorotyrosine (Cl2-Tyr), by liquid chromatography coupled to a triple quadrupole mass spectrometer. We evaluated demographic factors associated with elevated biomarker levels. RESULTS: Participant samples were analyzed for the chlorine biomarkers Cl-Tyr and Cl2-Tyr. In the unweighted analysis of these samples, 1349 (75.8%) were under the limit of detection (< LOD) of 2.50 ng/mL for Cl-Tyr and 1773 (99.6%) were < LOD for Cl2-Tyr. Samples within the method reportable range were 2.50 to 35.6 ng/mL for Cl-Tyr and 2.69 to 11.2 ng/mL for Cl2-Tyr. Since only 7 of the 1780 participants had detectable Cl2-Tyr, statistical analysis was limited to Cl-Tyr. Of the demographic characteristics examined, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and sex exhibited statistically significant differences in the weighted prevalence of detectable Cl-Tyr. CONCLUSIONS: This is the first reported set of Cl-Tyr and Cl2-Tyr population values for the United States. This population range coupled with NHANES demographic information could help healthcare professionals distinguish between normal and abnormal chlorine biomarker levels in an emergency. With this information, an inference could be made when determining acute chlorine exposure in individuals.


Chlorides , Chlorine , Tyrosine/analogs & derivatives , Humans , United States/epidemiology , Nutrition Surveys , Biomarkers
...